

Creation of ultra-high energy density matter using nanostructured targets on Titan laser

J. Park, R. Tommasini, R. London, J. Rocca, R. Hollinger, C. Bargsten, V. Shlyaptsev, H. Chen, A. Pukhov, M. Capeluto

February 1, 2016

Creation of ultra-high energy density matter using nanostructured targets on Titan laser Livermore, CA, United States February 1, 2016 through February 3, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Creation of ultra-high energy density matter using nanostructured targets on Titan laser

NIF / JLF User Group Meeting 2016

J. Park, R. Tommasini, J. Rocca, R. London, R. Hollinger, C. Bargsten, V. Shlyaptsev, H. Chen, A. Pukhov, M. Capeluto, M. Hill

The Jupiter Laser Facility serves a wide range of the science communities

Great training ground for students

- Hands on experience over extended periods of time
- Exposure to various diagnostics (facility owned and collaborations)
- Opportunities to interact with experts
- Student Friendly staff to answer questions and assist

Superb experimental platforms

- Three target areas that compliment each other: Comet, Janus, and Titan.
- Flexible laser configuration enables to investigate a wide range of laser plasma physics.

The Jupiter Laser Facility offers the best experimental platforms to train students,
test new ideas and diagnostics, and
scale up table-top laser experiments to higher laser energy experiments.

Research Team

Lawrence Livermore National Laboratory

Experiment: Riccardo Tommasini, Hui Chen, Jaebum Park

Simulation: Rich London

Colorado State University

Experiment: Professor Jorge Rocca, Reed Hollinger, Clayton Bargsten

Targets: Maria G. Capeluto

Simulation: Vyacheslav Shlyaptsev

University of Dusseldorf, Germany

Simulation: Alexander Pukhov

Atomic Weapon Establishment, U.K.

Experiment: Matt Hill

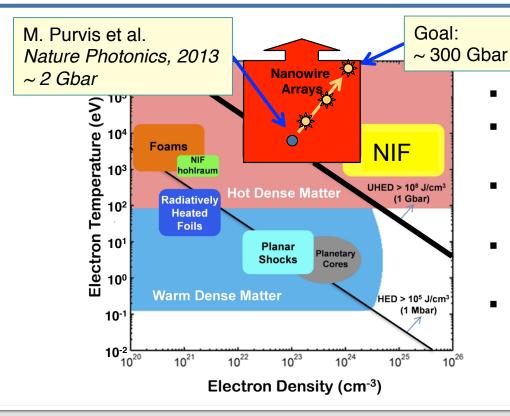
Outline

Motivation

Achieving extreme plasma conditions: M. Purvis et al. Nature Photonics, Oct. 2013

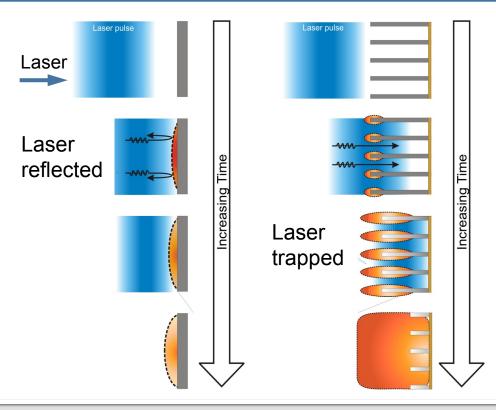
Nanostructured targets

- Required laser conditions
- Scaling to Titan laser


First experiment on Titan laser

- Reduced reflectivity
- Increased x-ray emission and conversion efficiency
- Increased electron energy and signal

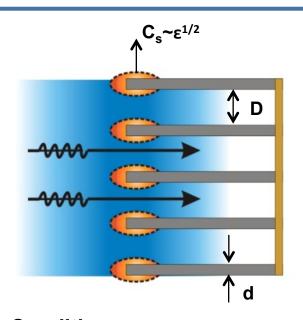
Summary / Conclusion


Nanostructured targets for new scientific platforms and x-ray sources

Nanostructured targets can achieve higher energy density than NIF can achieve via Spherical compression of fuel

- Highly ionized
- Ultra high energy density (UHED) plasmas
- high-flux high-energy x-ray radiation source
- Complement to traditional long pulse methods, i.e. NIF
- benchmarking of PIC/HYDRO codes at extreme regimes

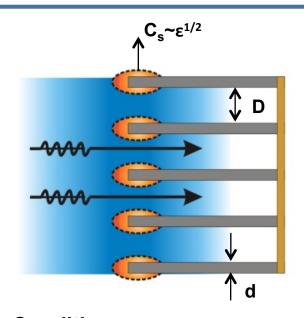
Nano wire arrays trap laser light and induce volumetric heating of near solid density matter



Requirements

- High contrast laser
- Laser pulse length shorter than Plasma expansion time

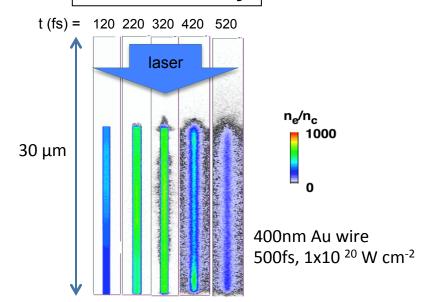
High density increases ionization rates and radiation efficiency.


Laser pulse length and fluence determine the wire-wire gap (D) and wire diameter (d)

	Quantity	CSU	multiplier	TITAN	units
Energy	E	0.5	100	50	J
Spot size	S	15	1	15	um
Laser pulse length	t,	60	8	500	fs
Laser Fluence	F	2.2E+05	100	2.2E+07	J/cm ²
Wire-Wire gap	D~F ^{1/3} t _i ^{2/3}	141	19	2700	nm
Wire Diameter	d ~ D	55	19	1050	nm

Condition: D/2 ≥ C_s t_l

Simple scaling suggests ~1 μm wires could achieve Energy densities up to ~ 10GJ/cm³ using Titan laser

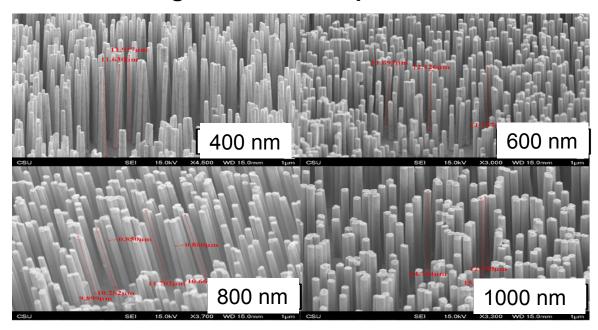

Condition:							
D/2 ≥ C _s	$\mathbf{t_l}$						

	Quantity	CSU	multiplier	TITAN	units
Energy	E	0.5	100	50	J
Spot size	S	15	1	15	um
Laser pulse length	t _l	60	8	500	fs
Laser Fluence	F	2.2E+05	100	2.2E+07	J/cm ²
Wire-Wire gap	D~F ^{1/3} t ^{2/3}	141	19	2700	nm
Wire Diameter	d ~ D	55	19	1050	nm
Energy Density	ε ~F/D ~F/d	2	5	10	GJ/cm ³

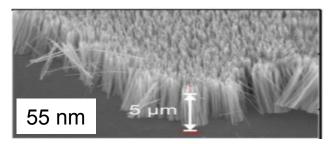
3-D PIC shows that the ponderomotive potential confines the wire longer than the C_st₁ scaling

Electron density

← 2.25 μm

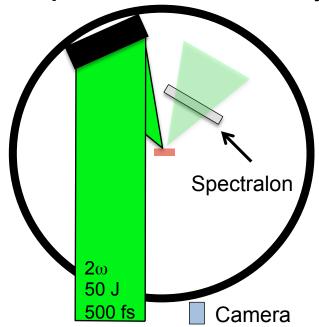

Wires with 400 ~ 800 nm diameters could be used on Titan laser

Even higher energy density, ~ 100 GJ/cm³, could be reached

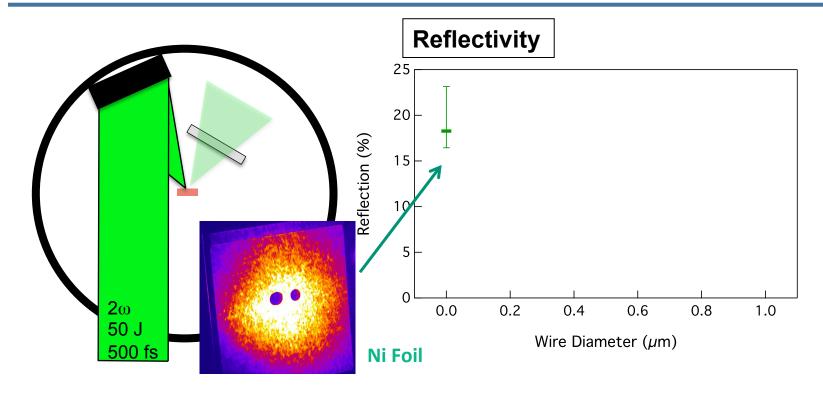

~ 0.1 laser energy conversion efficiency into x-rays is expected

Colorado State Univ. fabricated larger diameter nanostructured targets for the TITAN experiment

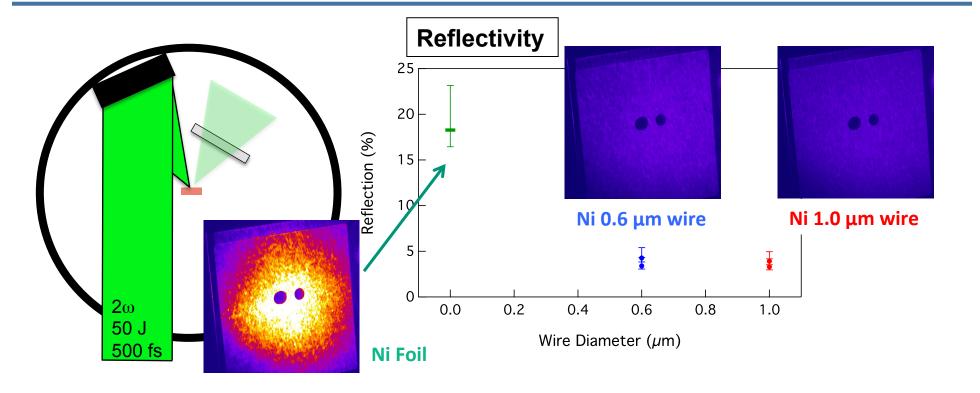
Targets for Titan experiment

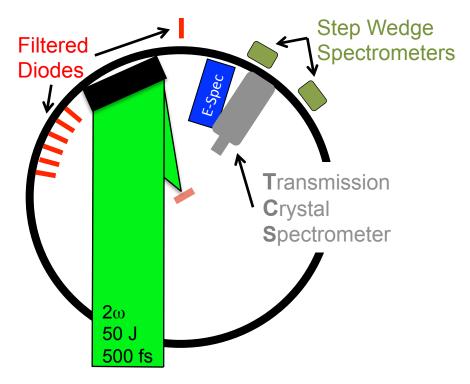


Targets for CSU

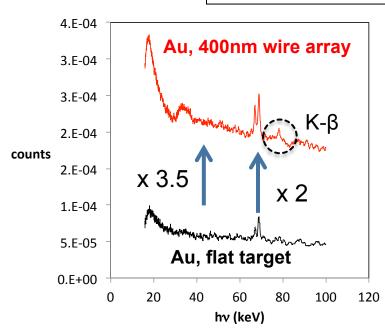


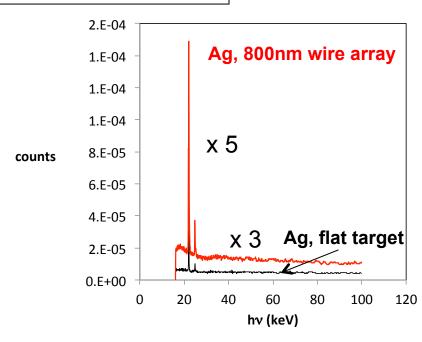
High contrast 2ω Titan laser was used to compare the performance of nanowire targets against flat targets


Setup to measure reflectivity

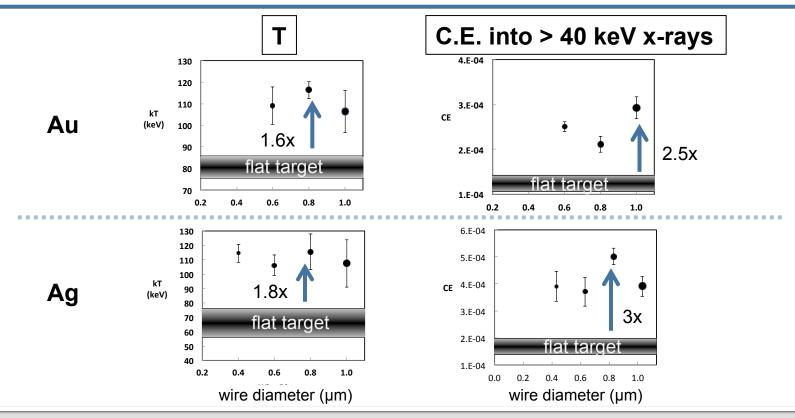

The 5x decrease in reflectivity indicates much higher laser energy coupling into nanowire targets

The 5x decrease in reflectivity indicates much higher laser energy coupling into nanowire targets

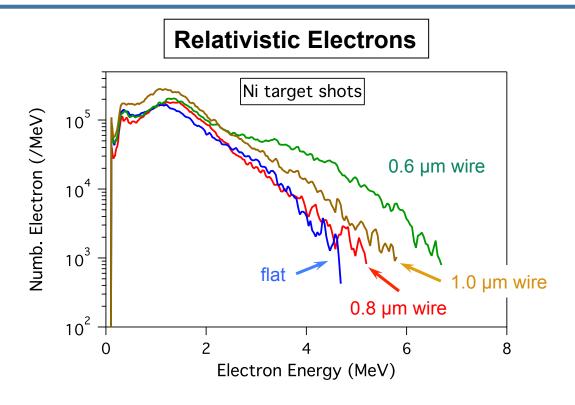

Various diagnostics were fielded to measure x-ray emission and electron spectrum from nanowire and flat targets

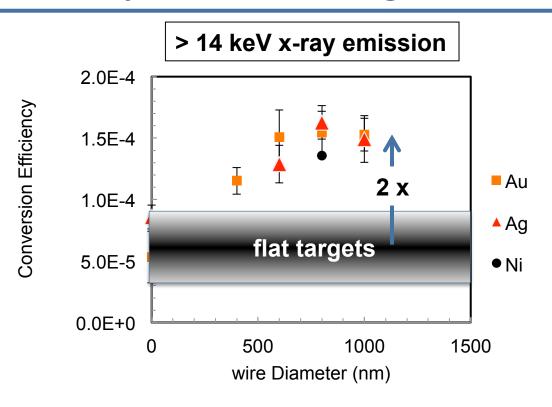


- TCS:16 100keV, x-ray Spectra
- Step Wedge Spectrometers: 40-800 keV, electron temperature, conversion efficiency
- Filtered Diodes:
 > 14 keV, Angular x-ray emission, conversion efficiency
- E-Spec: up to 110 MeV electrons


Great increase in continuum and K- α emission were recorded using nanowire targets (Au and Ag)

X-ray spectrum (continuum and $K-\alpha$)




Continuum emission showed large increase in temperature and conversion efficiency into x-ray with nanowire targets

An order of increase in ~ 5 MeV electron emission was recorded with nanowire targets

Lower energy continuum x-ray showed increased conversion efficiency with nanowire targets

The increase in CE from > 14 keV x-ray emission shows the dependence on the wire diameter.

Nanowire targets show great promise to achieve UHED plasmas and high-flux high-energy x-ray sources

- Reduced the reflectivity by ~ 5x:
 laser light trapping and significant increase in laser energy coupling
- Increased signature K_{α} emission by 3~5x and continuum x-ray by 3x
- Enhanced hot electron temperatures by > 1.6x
- Enhanced Conversion Efficiency ~ 3x

Future work

- Optimization of target parameters: upcoming COMET experiment (4 weeks)
- Simulations

Special Thanks to

Bob Cauble (director)

Beth Mariotti (administrator/coordinator)

Brent Stuart

Carl Bruns

Chuck Cadwalader

Dave Cloyne

Ed Gower

Jim Hunter

Jim Moody

Maura Spragge

Rick Cross

Rob Costa

Scott Andrew

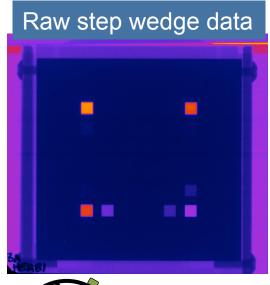
Steve Maricle

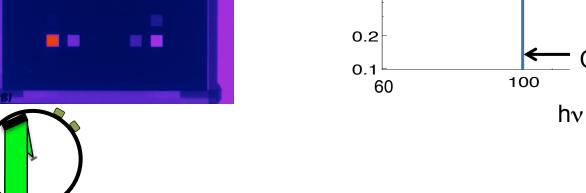
Hopeful changes and upgrades at the Jupiter Laser Facility

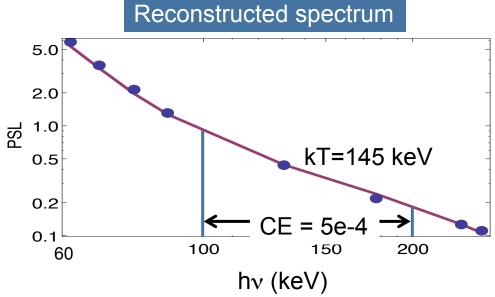
Better experimental experiences with the current laser capabilities

- Automated laser frequency conversion at Titan
- More laser diagnostics: 2ω pre-pulse and pulse length measurements
- Laser normal incidence: apparatus to prevent damaging laser system by the back reflection
- More resources to maintain the laser systems

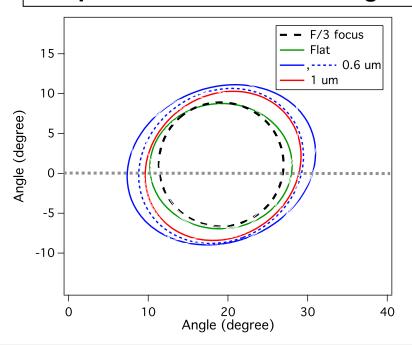
Upgrades for the future experiments

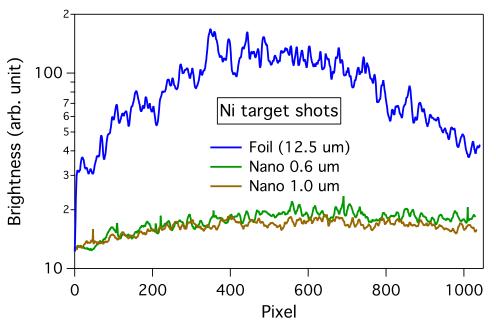

- A better trigger system: time resolved measurements
- A second short pulse laser on Titan: x-ray and proton imaging


JLF 2.0


Thank you

Bremsstrahlung spectra are measured using Ta step wedge with thicknesses ranging from 50µm to 8mm





The nano-wire targets changes the spatial profiles of reflected laser light

2-D profiles of the reflected light

The reflected light on the laser plane

